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Experimental investigation of a regime of Wigner ergodicity in microwave rough billiards
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We study experimentally a new regime of Wigner ergodicity@K.M. Frahm and D.L. Shepelyansky, Phys.
Rev. Lett.79, 1833~1997!# in a microwave rough billiard. We show that in the Wigner regime, eigenstates are
extended over the whole energy surface but have a strongly peaked nonergodic structure. The Shannon width
of the eigenstate distributions is calculated to estimate their spreads and to find their departure from the ergodic
distributions.
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In certain classes of chaotic billiards the quantum eig
states are known to be localized in angular momentum sp
for the relatively low-level numbers@1–3#. This phenom-
enon can be observed in billiards being a small distortion
the circular billiard such as the stadium billiard@1# and
weakly deformed~rough! circular billiards @2,3#. However,
according to Shnirelman theorem@4# the eigenstates becom
ergodic for sufficiently high level numbers@5,6#. The ques-
tion arises how does the transition from localized to ergo
regime occur? Analyzing rough circular billiards, Frahm a
Shepelyansky@6# predicted theoretically that the transitio
from localized states to the ergodic ones could pass thro
the intermediate regime of Wigner ergodicity. In this regim
the states are nonergodic but composed of rare strong p
that are distributed on the whole energy surface. At the sa
time the nearest-neighbor level-spacing statistics is
given by the Wigner distribution.

In this paper we present the experimental investigation
the regime of Wigner ergodicity. In the experiment we us
a brass cavity in the shape of a rough half circle~Fig. 1!. The
cavity sidewalls are made of three segments. The segme
and 2 are described by the radius functionRi(u)5R0

1(m52
M am

i sin(mu1fm
i ), wherei 51,2, the mean radiusR0

516.0 cm,M520, am
i andfm

i are uniformly distributed on
@0.076,0.084# cm and@0,2p#, respectively, and 0<u,p/2.
From many possible sets of the coefficientsam

i and phases
fm

i , we chose the ones that gave a smooth transition
tween the segments 1 and 2. We would like to note that
decided to use a rough~weakly deformed! half-circular cav-
ity instead of a rough circular cavity because of the spe
properties of an undeformed half-circular billiard. A ha
circular billiard is equivalent to the desymmetrized circu
billiard with the odd symmetry with respect to the reflecti
at the diameter. In a circular billiard the eigenvalues with
angular momentuml 5” 0 are twofold degenerate. It mean
that in a weakly deformed circular cavity many of the low
level eigenvalues are nearly degenerate and they could n
possibly distinguished in the measurements. Using a we
deformed half-circular cavity we overcame this serious pr
lem.

The surface roughness of a billiard is characterized by
function k(u)5(dR/du)/R0. Thus for our billiard we have
the angle averagek̃5@^k2(u)&u#1/2.0.183. In such a billiard
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the dynamics is diffusive in orbital momentum due to col
sions with the rough boundary becausek̃ is above the chaos
borderkc5M 25/250.000 56@2#. The roughness parameterk̃
determines also other properties of the billiard@6#. The
eigenstates of a rough half-circular billiard are localized
the level numberN,Ne51/128k̃4.7. The dynamic local-
ization in a rough microwave cavity was observed expe
mentally by Sirkoet al. @3#. The border of Breit-Wigner re-
gime is NW5M2/48k̃2.249. It means that betweenNe,N
,NW Wigner ergodicity ought to be observed and forN
.NW Shnirelman ergodicity should emerge.

One should mention that rough billiards and related s
tems are also of considerable interest elsewhere, for exam
in the context of ballistic electron transport in microstru
tures@7#, microdisc lasers@8,9#, and localization in discon-
tinuous quantum systems@10#.

It is well known that the Helmholtz equation describin
the electromagnetic field inside a thin microwave cavity@11#
can be equivalent to the Schro¨dinger equation in a two-
dimensional quantum billiard@12#. The equivalence take
place for frequencies below the onset of the thre
dimensional ~3D! electromagnetic mode atf cut5c/2h,
whereh is the height of a cavity andc is the speed of light.
In our experiment the cavity had the heighth50.8 cm and
was excited at frequencies up to 10 GHz, thus much be
the frequencyf cut.18.7 GHz.

In order to investigate the Wigner ergodicity, knowled

FIG. 1. Sketch of the rough half-circular microwave cavity
the xy plane. The dimensions are given in cm. The main segme
of the cavity are marked 1 and 2~see text!.
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of the ~electric field! eigenfunction is indispensable. To me
sure the eigenfunction we used the method described in@13#.
It is based on the measurements ofS matrix elements of the
system. The matrix elementS11 gave the quantity propor
tional to uC(x,y)u2 while the measurements of the transm
sion matrix elementsS21 determined the sign ofC(x,y).
Using a vector network analyzer~Wiltron 360B!, each eigen-
function was sampled with the step of 5 mm in bothx andy
directions leading to a total of about 1500 data points. In t
way we were able to measure the eigenfunctions with
level numbersN54 –127. The range of correspondin
eigenfrequenciesf N was from 2.07 GHz to 9.98 GHz. De
spite of the semi-circular geometry of the cavity, the re
nancesN5115 andN5116 were not resolved within th
experimental resolution, being approximately 8 MHz in t
vicinity of 9.5 GHz. Fortunately, this cluster of two reso
nances was easily spotted out by the comparison of the
perimental staircase function with the average number of
els predicted by the theoretical Weyl formula@14#. Better
resolution of the resonances is possible in other experime
systems such as 3D resonating quartz blocks@15# and 2D
superconducting cavities@16#. However, those systems a
not so well suited as our cavity for the measurements of
eigenfunctions. The two examples of the measured eig
functions with the eigenvaluesEN5kN

2 5(2p f N /c)2, f N

59.72 GHz and 9.98 GHz for the level numberN5120 and
N5127, respectively, are shown in Fig. 2. Both eigenfun

FIG. 2. Experimental eigenfunctions with the level numbers~a!
N5120 (f N59.72 GHz),~b! N5127 (f N59.98 GHz). The ampli-
tudes have been converted into a grey scale with white corresp
ing to large positive and black corresponding to large negative
ues, respectively.
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tions, as it will be seen further, represent the case of Wig
ergodicity.

In order to reveal the structure of the energy surface
extracted experimental eigenfunction amplitudesCnl

(N)

5^nluN& in the basisn,l of an unperturbed half-circular bil
liard, wheren51,2,3, . . . enumerates the zeros of the Bess
functions andl 51,2,3, . . . is theangular quantum number
The method of alternative extended Simpson’s rule@17# was
repeatedly used in 2D integration procedure. The uncerta
in evaluation of the amplitudesuCnl

(N)u is estimated to be
10%. The absolute amplitudesuCnl

(N)u are shown in Fig. 3.
The eigenstates are extended over the energy surface bu
composed of rare and strong peaks. The positions of
main peaksuCnl

(N)u>0.2 are marked by diamonds in Fig. 4
The error bars size is 2uCnl

(N)u. Figure 4 demonstrates that th
largest peaks appear for thosen and l that are close to the
energy surface of a half-circular billiardEnl5(Xl ,n /R0)2

.EN , whereXl ,n is the nth zero of the Bessel function o
orderl. The empty circle marks the energy surface calcula
from this formula under the assumptionuEnl2ENu/EN
<0.02. The full lines in Figs. 4~a! and 4~b! show the energy
surface of a half-circular billiard estimated from the sem
classical formula @6# Al max

2 2 l 22 larctan(l21Al max
2 2 l 2)

1p/45pn, where l max
2 5kN

2 R0
2 . As we see the agreemen

between quantum and semiclassical results is excellent.
main peaks (uCnl

(N)u>0.2) are spread almost perfectly alon
the lines marking the energy surface of a half-circular b
liard. The peaks are not equidistant but as it was predicte
@6# there are a lot of holes in their distribution.

Furthermore, we use the concept of the Shannon w
@18# to estimate quantitatively the spread of the eigens

d-
l-

FIG. 3. Structure of the energy surface in the regime of Wig
ergodicity. Here we show the absolute amplitudesuCnl

(N)u for the
eigenfunctions~a! N5120 and~b! N5127. The large peaks ar
distributed rarely but over the whole energy surface.
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distributions in then,l basis. The Shannon width is define
as follows: W(N)5exp(2(n,lpnl

(N)lnpnl
(N)), where pnl

(N)

5uCnl
(N)u2. The basic properties of the widthW(N) are the

following: if a single state is occupiedW(N)51; if the k
states are equiprobably populated,W(N)5k. The Shannon
widths W(N) of the distributions presented in Figs. 3~a! and
3~b! are 11.7 and 14.6, respectively. Our preliminary nume
cal calculations@19# carried out for the billiard with the sam
mean radiusR0516.0 cm but much larger roughness (NW
.40) show that for the states with the level numberN
51202127, the width of the ergodic distributions is a
proximatelyW(N).30. It is important to note that the width
of the ergodic distributions are significantly larger than t
ones measured in the regime of Wigner ergodicity.

Figure 5 shows the nearest-neighbor level-spacing di
bution for the eigenstatesN515–127, thus within the pre
dicted limits Ne,N,NW of Wigner ergodicity. The level-

FIG. 4. Energy surfaceH(n,l )5EN for the eigenstates~a! N
5120 and~b! N5127. The diamonds mark the main peaks of t
eigenstates (uCnl

(N)u>0.2); the error-bars size is 2uCnl
(N)u; empty

circles mark the energy surface for thosen,l for which uEnl

2ENu/EN<0.02. Full lines show the semiclassical estimation of
energy surface~see text!.

FIG. 5. Nearest-neighbor spacing distribution for the eigenst
N5152127. The full line shows Wigner distribution. The dotte
line marks Poisson distribution.
04620
i-
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spacing statistics is very close to the Wigner distributio
The missing resonance only slightly modifies the counts
the first bin of the distribution. Together with the peak
structures of the eigenstates presented in Fig. 3, this
further evidence that the eigenstates belong to a new reg
of Wigner ergodicity.

An additional confirmation of ergodic behavior of th
measured eigenfunctions can be also sought in the form
the amplitude distributionP(c) @20,21#. For irregular, cha-
otic states the probability of finding the valuec at any point
inside the billiard, without knowledge of the surroundin
values, should be distributed as a Gaussian,P(c);e2bc2

.
The amplitude distributionsP(c) for the eigenfunctionsN
5120 andN5127 are shown in Fig. 6. They were con
structed as normalized to unity histograms with the bin eq
to 0.5. Each particular histogram was built using appro
mately 1500 values of an eigenfunction. The width of t
experimental distributionP(c) was rescaled to unity by
multiplying the experimental, normalized to unity, eige
function by the factorA1/2, whereA denotes billiard’s area
~see formula~23! in @21#!. The agreement with the standa
normalized Gaussian predictionP0(c)5(1/A2p)e2c2/2 is
quite good though there are some deviations in the vicin
of zero.

The amplitudesCnl
(N) determine the local density of state

in the regime of Wigner ergodicity by

rW~E2Enl!5K (
N

d~E2EN!uCnl
(N)u2L . ~1!

The average is performed over a sufficiently large ene

s

FIG. 6. Amplitude distributionP(cA1/2) for the eigenstatesN
5120 ~empty circles! andN5127 ~empty triangles! constructed as
histograms with bin equal to 0.5. The width of the experimen
distribution P(c) was rescaled to unity by multiplying the exper
mental, normalized to unity, eigenfunction by the factorA1/2, where
A denotes billiard’s area. The full line shows standard normaliz

Gaussian predictionP0(cA1/2)5(1/A2p)e2c2A/2.
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interval. Theoretically, the local density of states is given
the Breit-Wigner distribution@6#,

rBW~E2Enl!5
1

p

GE/2

~E2Enl!
21GE

2/4
. ~2!

The equation~2! is valid for N,NW and DE5E2Enl

,Eb , where Eb52l max
2 /(R0

2Al max
2 2 l 2). The width of the

FIG. 7. Experimental local density of statesrW ~empty circles!
compared to theoretical Breit-Wigner distributionrBW ~full line!.
Ten experimental eigenstates with the level numberN between 87
and 127 were used in calculation ofrW .
et

.

04620
y

rBW distribution is given byGE52NAl max
2 2 l 2/(NWR0

2).
The comparison of the experimental local density of sta

rW and the Breit-Wigner distributionrBW is shown in Fig. 7.
The experimental points are the average of the results
tained from the ten eigenstates lying betweenN5872127.
All the chosen eigenstates were extended over the en
surface but displayed strong peaks and holes in their st
ture. The overall agreement of the experimental results
rW with the theoretically predictedrBW is very good. This
additionally confirms that presented in this paper eigenst
lie in a new regime of Wigner ergodicity.

Summarizing, we measured experimentally the eigenfu
tions of the rough half-circular billiard. We showed that f
Ne,N,NW some of the eigenstates are extended over
energy surface of a half-circular billiard but have strong
peaked nonergodic structure. This observation was quan
tively confirmed by the calculation of the Shannon widths
the eigenstates distributions. Moreover, the nearest-neig
level-spacing statistics was very close to the Wigner dis
bution, the amplitude distributionP(c) was close to the
Gaussian distribution, and finally the local density of sta
rW was very close to the Breit-Wigner densityrBW . All
these properties of the measured eigenstates confirm the
istence of a new regime of Wigner ergodicity.
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