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Experimental investigation of a regime of Wigner ergodicity in microwave rough billiards
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We study experimentally a new regime of Wigner ergodi¢kyM. Frahm and D.L. Shepelyansky, Phys.
Rev. Lett.79, 1833(1997)] in a microwave rough billiard. We show that in the Wigner regime, eigenstates are
extended over the whole energy surface but have a strongly peaked nonergodic structure. The Shannon width
of the eigenstate distributions is calculated to estimate their spreads and to find their departure from the ergodic
distributions.
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In certain classes of chaotic billiards the quantum eigenthe dynamics is diffusive in orbital momentum due to colli-

states are known to be localized in angular momentum spacgons with the rough boundary becatlses above the chaos
for the relatively low-level number§l—-3]. This phenom- borderk,=M ~52=0.000 562]. The roughness paramefer
enon can be observed in billiards being a small distortion ofjetermines also other properties of the billidi]. The
the circular billiard such as the stadium billiafd] and  ejgenstates of a rough half-circular billiard are localized for
weakly deformedrough circular billiards[2,3]. However, the level numbeN<N,=1/12&*=7. The dynamic local-
according to Shnirelman theordd| the eigenstates become ization in a rough migrowave cavity was observed experi-

ergodic for sufficiently high level numbet$,6]. The ques-  mentally by Sirkoet al. [3]. The border of Breit-Wigner re-

tion arises how does the transition from localized to ergodic_. . 2102
= =249, <

regime occur? Analyzing rough circular billiards, Frahm andglme IS Ny =M"/48k =249. It means that betwedit,=<N

. . ... <Ny Wigner ergodicity ought to be observed and fdr
Shepelyansky[6] predicted theoretically that the transition =Ny, Shnirelman ergodicity should emerge.

from localized states to the ergodic ones could pass through one should mention that rough billiards and related sys-
the intermediate regime of Wigner ergodicity. In this regime e g are also of considerable interest elsewhere, for example,
the states are nonergodic but composed of rare strong peaffs the context of ballistic electron transport in microstruc-
that are distributed on the whole energy surface. At the samgres[7], microdisc laser$8,9], and localization in discon-
time the nearest-neighbor level-spacing statistics is stillin,ous quantum systeni&0].
given by the Wigner distribution. , _ o It is well known that the Helmholtz equation describing

In this paper we present the experimental investigation ofj,e electromagnetic field inside a thin microwave cafity]
the regime _of Wigner ergodicity. In the expgriment we usedzan pe equivalent to the Scldiager equation in a two-
a brass cavity in the shape of a rough half cii¢i&@. 1). The  gimensional quantum billiard12]. The equivalence takes
cavity sidewalls are made of three segments. The segmentsp]ace for frequencies below the onset of the three-
and 2 are described by the radius functi®(6)=Ro  dimensional (3D) electromagnetic mode af .= c/2h,
+2n_ansin(mé+ ¢r), wherei=1,2, the mean radiuRy  whereh is the height of a cavity and is the speed of light.
=16.0 cm,M =20, a;, and ¢, are uniformly distributed on  |n our experiment the cavity had the heigiht 0.8 cm and
[0.076,0.084 cm and[0,27], respectively, and € 6<w/2.  was excited at frequencies up to 10 GHz, thus much below
From many possible sets of the coefficieats and phases the frequencyf,~18.7 GHz.
¢, we chose the ones that gave a smooth transition be- In order to investigate the Wigner ergodicity, knowledge
tween the segments 1 and 2. We would like to note that we
decided to use a roughveakly deformegl half-circular cav-
ity instead of a rough circular cavity because of the special
properties of an undeformed half-circular billiard. A half-
circular billiard is equivalent to the desymmetrized circular = 4
billiard with the odd symmetry with respect to the reflection é
at the diameter. In a circular billiard the eigenvalues with the 5.
angular momentunt#0 are twofold degenerate. It means 5T
that in a weakly deformed circular cavity many of the low-
level eigenvalues are nearly degenerate and they could not b
possibly distinguished in the measurements. Using a weakly
deformed half-circular cavity we overcame this serious prob-
lem.

The surface roughness of a billiard is characterized by the FIG. 1. Sketch of the rough half-circular microwave cavity in

function k(6) =(dR/d#)/R,. Thus for our billiard we have  ihexy plane. The dimensions are given in cm. The main segments
the angle averade=[(k?(#6)),]Y?>=0.183. In such a billiard  of the cavity are marked 1 and(&ee text

157

-15 -10 -5 0 5 10 15
X (cm)

1063-651X/2001/6@}/0462084)/$20.00 63 046208-1 ©2001 The American Physical Society



HLUSHCHUK, SIRKO, KUHL, BARTH, AND STGCKMANN PHYSICAL REVIEW E 63 046208

RN

RN

e
"ﬁ

FIG. 3. Structure of the energy surface in the regime of Wigner
ergodicity. Here we show the absolute amplitud€$)’| for the
eigenfunctions(a) N=120 and(b) N=127. The large peaks are

FIG. 2. Experimental eigenfunctions with the level numb@s  djstributed rarely but over the whole energy surface.

N=120 (fy=9.72 GHz),(b) N=127 (fy=9.98 GHz). The ampli-
tudes have been converted into a grey scale with white corresponta—ons as it will be seen further, represent the case of Wigner
ing to large positive and black corresponding to large negative val- ' '

ues, respectivel ergodicity.
P g In order to reveal the structure of the energy surface we

extracted experimental eigenfunction amplitudéﬁﬁ‘)
of the (electric field eigenfunction is indispensable. To mea- =(nl|N) in the basis,| of an unperturbed half-circular bil-
sure the eigenfunction we used the method describgti3h  |iard, wheren=1,2,3 . . . enumerates the zeros of the Bessel
It is based on the measurementsSahatrix elements of the functions and=1,2,3 ... is theangular quantum number.
system. The matrix elemer§;; gave the quantity propor- The method of alternative extended Simpson’s fdlg was
tional to|W(x,y)|? while the measurements of the transmis-repeatedly used in 2D integration procedure. The uncertainty
sion matrix elementsS,; determined the sign of(x,y).  in evaluation of the amplitudefC{\’| is estimated to be
Using a vector network analyzéwiltron 360B), each eigen-  10%. The absolute amplitudé€())| are shown in Fig. 3.
function was sampled with the step of 5 mm in bathndy = The eigenstates are extended over the energy surface but are
directions leading to a total of about 1500 data points. In thicomposed of rare and strong peaks. The positions of the
way we were able to measure the eigenfunctions with thenain peakdC{\’|=0.2 are marked by diamonds in Fig. 4.
level numbersN=4-127. The range of corresponding The error bars size is|2:§,“|‘)|. Figure 4 demonstrates that the
eigenfrequencie$y was from 2.07 GHz to 9.98 GHz. De- largest peaks appear for thoseand| that are close to the
spite of the semi-circular geometry of the cavity, the reso-energy surface of a half-circular billiar&, = (X ,/Ro)?
nancesN=115 andN=116 were not resolved within the =Ey, whereX , is thenth zero of the Bessel function of
experimental resolution, being approximately 8 MHz in theorderl. The empty circle marks the energy surface calculated
vicinity of 9.5 GHz. Fortunately, this cluster of two reso- from this formula under the assumptiofE, —E|/Ey
nances was easily spotted out by the comparison of the ex=0.02. The full lines in Figs. @ and 4b) show the energy
perimenta' staircase function W|th the average number of |evsurface Of a ha|f-Cil‘CU|al' b|”|ard estimated from the Semi'
els predicted by the theoretical Weyl formula4]. Better ~ classical formula [6] I, 1?—larctan("*\17,,,~17)

resolution of the resonances is possible in other experimentat /4= 7n, wherel?_ =k%R5. As we see the agreement

max

systems such as 3D resonating quartz blddég and 2D  between quantum and semiclassical results is excellent. The
superconducting cavitiel6]. However, those systems are main peaks |(C§1'|“)|>0.2) are spread almost perfectly along
not so well suited as our cavity for the measurements of theénhe lines marking the energy surface of a half-circular bil-
eigenfunctions. The two examples of the measured eigeniard. The peaks are not equidistant but as it was predicted in
functions with the eigenvalueENzkﬁz(erfN/c)Z, fn [6] there are a lot of holes in their distribution.

=09.72 GHz and 9.98 GHz for the level numbes 120 and Furthermore, we use the concept of the Shannon width
N=127, respectively, are shown in Fig. 2. Both eigenfunc{18] to estimate quantitatively the spread of the eigenstate
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FIG. 4. Energy surfacéi(n,|)=Ey for the eigenstatesa) N ) T
=120 and(b) N=127. The diamonds mark the main peaks of the )
eigenstates |C)|=0.2); the error-bars size is|@{\|; empty A2
circles mark the energy surface for thosgl for which |E,, V.
—En|/En<0.02. Full lines show the semiclassical estimation of the
energy surfacésee text

FIG. 6. Amplitude distributiorP(/A'?) for the eigenstatesl
=120 (empty circle3 andN= 127 (empty triangles constructed as
histograms with bin equal to 0.5. The width of the experimental
distributions in then,| basis. The Shannon width is defined distribution P(i) was rescaled to unity by multiplying the experi-
as follows: W(N)=eXp(—Eanw)'npﬁD)- where p(n'l\‘) mental, normalized to unity, eigenfunction by the factdf?, where
:|C§1'|\‘)|2- The basic properties of the widw™ are the A denotes billiard’s area. The full line sho;/vs standard normalized
following: if a single state is occupie®®™=1; if the k  Gaussian predictioRo(yAY) = (112m)e VA2,
states are equiprobably populataf™)=k. The Shannon
widths W) of the distributions presented in FiggaBand  spacing statistics is very close to the Wigner distribution.
3(b) are 11.7 and 14.6, respectively. Our preliminary numeri-The missing resonance only slightly modifies the counts in
cal calculation§19] carried out for the billiard with the same the first bin of the distribution. Together with the peaked
mean radiusR,=16.0 cm but much larger roughness,{  structures of the eigenstates presented in Fig. 3, this is a
=40) show that for the states with the level numbér further evidence that the eigenstates belong to a new regime
=120-127, the width of the ergodic distributions is ap- of Wigner ergodicity.
proximatelyW®™ =30. It is important to note that the widths An additional confirmation of ergodic behavior of the
of the ergodic distributions are significantly larger than themeasured eigenfunctions can be also sought in the form of
ones measured in the regime of Wigner ergodicity. the amplitude distributiorP(¢) [20,21. For irregular, cha-

Figure 5 shows the nearest-neighbor level-spacing distriotic states the probability of finding the valyeat any point
bution for the eigenstated=15-127, thus within the pre- inside the billiard, without knowledge of the surrounding
dicted limits Ne<N<N, of Wigner ergodicity. The level- values, should be distributed as a Gaussl%:h,{z)~e*3'/’2.

The amplitude distribution® () for the eigenfunctiondN
=120 andN=127 are shown in Fig. 6. They were con-
structed as normalized to unity histograms with the bin equal
to 0.5. Each particular histogram was built using approxi-

081 PN ] mately 1500 values of an eigenfunction. The width of the
T experimental distributionP () was rescaled to unity by
06t / 1 multiplying the experimental, normalized to unity, eigen-
> 1\ [ function by the factorA?, whereA denotes billiard’s area
S (see formula23) in [21]). The agreement with the standard
04§ | ]

normalized Gaussian predictioRy(y)=(1/\2m)e ¥ is
1 quite good though there are some deviations in the vicinity
02} e . of zero.

R The amplitudeC{)’ determine the local density of states
in the regime of Wigner ergodicity by

0.0 : : '
0.0 0.5 1.0 1.5 20 2.5 3.0
S
_ S _ pw(E—Eq)={ X S(E—Ey)[C{V?). (6
FIG. 5. Nearest-neighbor spacing distribution for the eigenstates N
N=15-127. The full line shows Wigner distribution. The dotted
line marks Poisson distribution. The average is performed over a sufficiently large energy
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FIG. 7. Experimental local density of stateg (empty circle$
compared to theoretical Breit-Wigner distributigg,, (full line).
Ten experimental eigenstates with the level nunilidretween 87
and 127 were used in calculation @f, .
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pew distribution is given byl'g=2N \/Izmax—lzl(NWRS).

The comparison of the experimental local density of states
pw and the Breit-Wigner distributiopgyy is shown in Fig. 7.
The experimental points are the average of the results ob-
tained from the ten eigenstates lying betwéén 87—127.

All the chosen eigenstates were extended over the energy
surface but displayed strong peaks and holes in their struc-
ture. The overall agreement of the experimental results for
pw With the theoretically predictedg,y is very good. This
additionally confirms that presented in this paper eigenstates
lie in a new regime of Wigner ergodicity.

Summarizing, we measured experimentally the eigenfunc-
tions of the rough half-circular billiard. We showed that for
N.<N<Ny, some of the eigenstates are extended over the
energy surface of a half-circular billiard but have strongly
peaked nonergodic structure. This observation was quantita-
tively confirmed by the calculation of the Shannon widths of
the eigenstates distributions. Moreover, the nearest-neighbor
level-spacing statistics was very close to the Wigner distri-
bution, the amplitude distributiof?(¢) was close to the
Gaussian distribution, and finally the local density of states
pw was very close to the Breit-Wigner densipgy. All

interval. Theoretically, the local density of states is given bythese properties of the measured eigenstates confirm the ex-

the Breit-Wigner distributiorj6],

1 T2

PBME—Em):;m- (2

The equation(2) is valid for N<Ny, and AE=E—-E,
<Ey, whereEp=2I2,/(R2\12,,~1%). The width of the

istence of a new regime of Wigner ergodicity.
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